Guide to NumPy's arange() Function (2024)

Introduction

NumPy is the most popular mathematical computing Python library. It offers a great number of mathematical tools including but not limited to multi-dimensional arrays and matrices, mathematical functions, number generators, and a lot more.

One of the fundamental tools in NumPy is the ndarray - an N-dimensional array. Today, we're going to create ndarrays, generated in certain ranges using the NumPy.arange() function.

Parameters and Return

numpy.arange([start, ]stop, [step, ]dtype=None)

Returns evenly spaced values within a given interval where:

  • start is a number (integer or real) from which the array starts from. It is optional.
  • stop is a number (integer or real) which the array ends at and is not included in it.
  • step is a number that sets the spacing between the consecutive values in the array. It is optional and is 1 by default.
  • dtype is the type of output for array elements. It is None by default.

The method returns an ndarray of evenly spaced values. If the array returns floating-point elements the array's length will be ceil((stop - start)/step).

np.arange() by Example

Importing NumPy

To start working with NumPy, we need to import it, as it's an external library:

import NumPy as np

If not installed, you can easily install it via pip:

$ pip install numpy

All-Argument np.arange()

Let's see how arange() works with all the arguments for the function. For instance, say we want a sequence to start at 0, stop at 10, with a step size of 3, while producing integers.

In a Python environment, or REPL, let's generate a sequence in a range:

>>> result_array = np.arange(start=0, stop=10, step=2, dtype=int)

The array is an ndarray containing the generated elements:

>>> result_arrayarray([0, 2, 4, 6, 8])

It's worth noting that the stop element isn't included, while the start element is included, hence we have a 0 but not a 10 even though the next element in the sequence should be a 10.

Guide to NumPy's arange() Function (1)

Note: As usual, you can provide positional arguments, without naming them or named arguments.

Until you've memorized their positions by heart - it might help naming them:

array = np.arange(start=0, stop=10, step=2, dtype=int)# These two statements are the samearray = np.arange(0, 10, 2, int)

For the sake of brevity, the latter is oftentimes used, and the positions of these arguments must follow the sequence of start, stop, step, and dtype.

np.arange() with stop

If only one argument is provided, it will be treated as the stop value. It will output all numbers up to but not including the stop number, with a default step of 1 and start of 0:

>>> result_array = np.arange(5)>>> result_arrayarray([0, 1, 2, 3, 4])

np.arange() with start and stop

With two arguments, they default to start and stop, with a default step of 1 - so you can easily create a specific range without thinking about the step size:

>>> result_array = np.arange(5, 10)>>> result_arrayarray([5, 6, 7, 8, 9])

Like with previous examples, you can also use floating point numbers here instead of integers. For example, we can start at 5.5:

>>> result_array = np.arange(5.5, 11.75)

The resulting array will be:

>>> result_arrayarray([ 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5])

np.arange() with start, stop and step

The default dtype is None and in that case, ints are used so having an integer-based range is easy to create with a start, stop and step. For instance, let's generate a sequence of all the even numbers between 6 (inclusive) and 22 (exclusive):

>>> result_array = np.arange(6, 22, 2)

The result will be all even numbers between 6 up to but not including 22:

>>> result_arrayarray([ 6, 8, 10, 12, 14, 16, 18, 20])

np.arange() for Reversed Ranges

We can also pass in negative parameters into the np.arange() function to get a reversed array of numbers.

The start will be the larger number we want to start counting from, the stop will be the lower one, and the step will be a negative number:

result_array = np.arange(start=30,stop=14, step=-3)

The result will be an array of descending numbers with a negative step of 3:

>>> result_arrayarray([30, 27, 24, 21, 18, 15])

Creating Empty NDArrays with np.arange()

We can also create an empty arange as follows:

>>> result_array = np.arange(0)

The result will be an empty array:

Free eBook: Git Essentials

Check out our hands-on, practical guide to learning Git, with best-practices, industry-accepted standards, and included cheat sheet. Stop Googling Git commands and actually learn it!

>>> result_arrayarray([], dtype=int32)

This happens because 0 is the stop value we've set, and the start value is also 0 by default. So, the counting stops before starting.

Another case where the result will be an empty array is when the start value is higher than the stop value while the step is positive. For example:

>>> result_array = np.arange(start=30, stop=10, step=1)

The result will also be an empty array.

>>> result_arrayarray([], dtype=int32)

This can also happen the other way around. We can start with a small number, stop at a larger number, and have the step as a negative number. The output will be an empty array too:

>>> result_array = np.arange(start=10, stop=30, step=-1)

This also results in an empty ndarray:

>>> result_arrayarray([], dtype=int32)

Supported Data Types for np.arange()

The dtype argument, which defaults to int can be any valid NumPy data type.

Guide to NumPy's arange() Function (2)

Note: This isn't to be confused with standard Python data types, though.

You can use the shorthand version for some of the more common data types, or the full name, prefixed with np.:

np.arange(..., dtype=int)np.arange(..., dtype=np.int32)np.arange(..., dtype=np.int64)

For some other data types, such as np.csignle, you'll prefix the type with np.:

>>> result_array = np.arange(start=10, stop=30, step=1, dtype=np.csingle)>>> result_arrayarray([10.+0.j, 11.+0.j, 12.+0.j, 13.+0.j, 14.+0.j, 15.+0.j, 16.+0.j, 17.+0.j, 18.+0.j, 19.+0.j, 20.+0.j, 21.+0.j, 22.+0.j, 23.+0.j, 24.+0.j, 25.+0.j, 26.+0.j, 27.+0.j, 28.+0.j, 29.+0.j], dtype=complex64)

A common short-hand data type is a float:

>>> result_array = np.arange(start=10, stop=30, step=1, dtype=float)>>> result_arrayarray([10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29.])

For a list of all supported NumPy data types, take a look at the official documentation.

np.arange() vs np.linspace()

np.linspace() is similar to np.arange() in returning evenly spaced arrays. However, there are a couple of differences.

With np.linspace(), you specify the number of samples in a certain range instead of specifying the step. In addition, you can include endpoints in the returned array. Another difference is that np.linspace() can generate multiple arrays instead of returning only one array.

This is a simple example of np.linspace() with the endpoint included and 5 samples:

>>> result_array = np.linspace(0, 20, num=5, endpoint=True)>>> result_arrayarray([ 0., 5., 10., 15., 20.])

Here, both the number of samples and the step size is 5, but that's coincidental:

>>> result_array = np.linspace(0, 20, num=2, endpoint=True)>>> result_arrayarray([ 0., 20.])

Here, we make two points between 0 and 20, so they're naturally 20 steps apart. You can also the endpoint to False and np.linspace() will behave more like np.arange() in that it doesn't include the final element:

>>> result_array = np.linspace(0, 20, num=5, endpoint=False)>>> result_arrayarray([ 0., 4., 8., 12., 16.])

np.arange() vs built-in range()

Python's built-in range() function and np.arange() share a lot of similarities but have slight differences. In the following sections, we're going to highlight some of the similarities and differences between them.

Parameters and Returns

The main similarities are that they both have a start, stop, and step. Additionally, they are both start inclusive, and stop exclusive, with a default step of 1.

However:

  • np.arange()
  1. Can handle multiple data types including floats and complex numbers
  2. returns a ndarray
  3. The array is fully created in memory
  • range()
  1. Can handle only integers
  2. Returns a range object
  3. Generates numbers on demand

Efficiency and Speed

There are some speed and efficiency differences between np.arange() and the built-in range() function. The range function generates the numbers on demand and doesn't create them in-memory, upfront.

This helps speed the process up if you know you'll break somewhere in that range: For example:

for i in range(100000000): if i == some_number: break

This will consume less memory since not all numbers are created in advance. This also makes ndarrays slower to initially construct.

However, if you still need the whole range of numbers in-memory, np.arange() is significantly faster than range() when the full range of numbers comes into play, after they've been constructed.

For instance, if we just iterate through them, the time it takes to create the arrays makes np.arange() perform slower due to the higher upfront cost:

$ python -m timeit "for i in range(100000): pass"200 loops, best of 5: 1.13 msec per loop$ python -m timeit "import numpy as np" "for i in np.arange(100000): pass"100 loops, best of 5: 3.83 msec per loop

Conclusion

This guide aims to help you understand how the np.arange() function works and how to generate sequences of numbers.

Here's a quick recap of what we just covered.

  1. np.arange() has 4 parameters:
    • start is a number (integer or real) from which the array starts from. It is optional.
    • stop is a number (integer or real) which the array ends at and is not included in it.
    • step is a number that sets the spacing between the consecutive values in the array. It is optional and is 1 by default.
    • dtype is the type of output for array elements. It is None by default.
  2. You can use multiple dtypes with arange including ints, floats, and complex numbers.
  3. You can generate reversed ranges by having the larger number as the start, the smaller number as the stop, and the step as a negative number.
  4. np.linspace() is similar to np.arange() in generating a range of numbers but differs in including the ability to include the endpoint and generating a number of samples instead of steps, which are computed based on the number of samples.
  5. np.arange() is more efficient than range when you need the whole array created. However, the range is better if you know you'll break somewhere when looping.
Guide to NumPy's arange() Function (2024)

References

Top Articles
FNAF Games In Order (2023) - Timeline & By Lore! - Try Hard Guides
All FNAF games in order
Muk Chalinee
Beau Is Afraid Showtimes Near Island 16 Cinema De Lux
Ucsf Ilab
Laura Loomer, far-right provocateur who spread 9/11 conspiracy theory, influencing Trump as he searches for a message | CNN Politics
Digitaler Geldbeutel fürs Smartphone: Das steckt in der ID Wallet-App
Corgsky Puppies For Sale
Smoke Terminal Waterbury Photos
Espn Transfer Portal Basketball
411.Com Reverse Address Lookup
Sonic Fan Games Hq
Astral Ore Calamity
Teenbeautyfitness
Mogadore Reservoir Boat Rental Price
55000 Pennies To Dollars
Watch The Most Popular Video Of Mikayla Campinos Online
Evertote.ca
Emmi Sellers Cheerleader
Walgreens Pharmacy | Manage Prescriptions, Transfers, and Refills
Restaurants Near Defy Trampoline Park
Cool Motion matras kopen bij M line? Sleep well. Move better
Walmart Supercenter Nearest To My Location
Seanna: meaning, origin, and significance explained
Takeaways from AP's report updating the cult massacre that claimed hundreds of lives in Kenya
Todos los dress codes para hombre que existen, explicados
Wolf Of Wall Street Tamil Dubbed Full Movie
Kemono Party Only Fans
Rooftop Snipers Unblocked Games Premium
Small Party Hall Near Me
SimpliSafe Home Security Review: Still a Top DIY Choice
Craigs List Skagit County
Bully Scholarship Edition Math 5
Missing 2023 Showtimes Near Golden Ticket Cinemas Dubois 5
Is Jamie Kagol Married
Witchwood Icon
Raz-Plus Literacy Essentials for PreK-6
Fade En V Pelo Corto
Texas Longhorns Soccer Schedule
Brooklyn Park City Hall
Milepslit Ga
Son Blackmailing Mother
eCare: Nutzung am PC | BARMER
Papajohnxx
Appsanywhere Mst
55000 Pennies To Dollars
168 Bus Schedule Pdf 2022
Vcu Basketball Wiki
The t33n leak 5-17: Understanding the Impact and Implications - Mole Removal Service
Craigslist Old Forge
Explain the difference between a bar chart and a histogram. | Numerade
Wayfair Outlet Dayton Ohio
Latest Posts
Article information

Author: Twana Towne Ret

Last Updated:

Views: 6364

Rating: 4.3 / 5 (64 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Twana Towne Ret

Birthday: 1994-03-19

Address: Apt. 990 97439 Corwin Motorway, Port Eliseoburgh, NM 99144-2618

Phone: +5958753152963

Job: National Specialist

Hobby: Kayaking, Photography, Skydiving, Embroidery, Leather crafting, Orienteering, Cooking

Introduction: My name is Twana Towne Ret, I am a famous, talented, joyous, perfect, powerful, inquisitive, lovely person who loves writing and wants to share my knowledge and understanding with you.